圖1.Michelson 干涉儀的計量線
為了讓邊緣圖案具有更好的可見度,光束經(jīng)過Michelson干涉儀八個臂的光學(xué)路徑長度(OPL)必須進行均衡,其誤差需要在工作頻帶相干長度的范圍之內(nèi)。對于一定的Michelson 干涉儀任務(wù)而言,經(jīng)過八個臂的光束的OPL必須將誤差均衡在100 nm之內(nèi)。如果達到了這個條件,就可以稱為干涉儀達到了“同相位”。在達到同相位條件之后,就可以使用望遠鏡進行觀測。在聚焦平面的圖像集成時間之內(nèi),干涉儀的八個臂之間的OPD 必須控制在觀測波長范圍之內(nèi)(即OPDij < 10 nm),以便避免邊界“跳躍”或是邊界模式相位出現(xiàn)較大變化,造成得到的圖形出現(xiàn)對比度損失。如果這種情況在觀測過程中出現(xiàn),得到的干涉儀圖像就會完全模糊,為了重建目標(biāo)原始圖像所需的必要信息也將丟失。
干涉儀帶有激光計量系統(tǒng),以便測量干涉儀臂之間的光學(xué)路徑差(絕對差和相對差),從而使用電動延遲線控制光學(xué)路徑差??刂葡到y(tǒng)可以對激光干涉儀進行測量,將指令發(fā)送到延遲線上。
激光干涉法是至今為止用于測量長距離變化的最佳方法??梢允褂枚喾N干涉方法,但是所有方法都是基于干涉原理的:由同一個光源發(fā)出的兩束或多束光線通過不同長度的路徑最終交匯(匯聚)在用于測量光強的探測器上。探測器上的光強是干涉光線(波)的相對相位的函數(shù),他們可以相互增強,也可以相互減弱。在對干涉信號的分析中,可以得出關(guān)于不同光束路徑差的信息。為了測量光學(xué)干涉儀兩個臂之間的長度差,最終的方法就是使用Michelson類型的激光干涉儀。激光干涉儀包括兩種類型的激光計量:
● 絕對計量系統(tǒng)(由位于葡萄牙里斯本的INETI機構(gòu)開發(fā)),提供了兩個干涉儀臂之間光學(xué)路徑差的實際數(shù)值,分辨率較低。
● 相對計量系統(tǒng)(由位于意大利都靈的Alcatel Alenia Space Italia開發(fā)),提供了干涉儀臂之間光學(xué)路徑差的變化(相對于給定初始值的變化),分辨率較高。
兩種計量系統(tǒng)都利用光學(xué)干涉儀原型進行光學(xué)干涉,利用控制系統(tǒng)對延遲線發(fā)出指令進行電子學(xué)層面的交互。
絕對計量用來支持達到Michelson干涉儀的同相位條件,它是由干涉儀多個臂之間的光學(xué)路徑達到相干距離范圍之內(nèi)而構(gòu)成的,因此較高可見度的邊緣模式在儀器的聚焦平面上形成。
相對計量提供了對OPL變化的測量,從一個給定的初始值開始(這個數(shù)值是在達到同相位操作之后的數(shù)值),這個數(shù)值被控制系統(tǒng)利通過電動延遲線的精調(diào)級用于固定邊界圖案(OPD 10 nm)。相對計量是基于Michelson 干涉儀計量的,具有納米級別的分辨率。OPD 干擾需要在對象觀測過程中進行補償,它來自于熱學(xué)負(fù)載或是發(fā)生在衛(wèi)星內(nèi)部的振動(例如方向控制系統(tǒng))等造成的衛(wèi)星結(jié)構(gòu)變化,通過儀器結(jié)構(gòu),傳遞至干涉儀鏡面。
同相位系統(tǒng)實驗室演示器
同相位系統(tǒng)是望遠鏡設(shè)計最為關(guān)鍵的部分。為了測試并且演示同相位系統(tǒng)的概念,即將干涉儀臂之間的OPL 通過一個自由度的延遲線進行均衡,實現(xiàn)了一個實驗室演示器。MIT演示器由一個簡化的實驗室尺寸的光學(xué)干涉儀原型組成,實現(xiàn)了與高分辨率衛(wèi)星望遠鏡相同的光學(xué)配置拓?fù)洹?/span>
由于同相位系統(tǒng)概念是要控制望遠鏡臂之間的OPD變化,同相位系統(tǒng)的實驗室演示器帶有一條控制延遲線(CDL)能夠在(主要)臂上工作,它跟蹤另一條(從屬)臂的OPL 變化,還帶有一條擾動延遲線(DDL)作用在(從屬)臂上,和預(yù)測的體現(xiàn)在衛(wèi)星望遠鏡上的擾動PSD 相似,引入具有相同功率譜密度(PSD)的OPL擾動。實驗室演示器需要達到的性能必須與衛(wèi)星望遠鏡要求的性能一致。
控制延遲線由兩個執(zhí)行器組成:一個粗調(diào)臺式電動平移器和一個精調(diào)臺式壓電變換器。擾動線僅由壓電變換器組成。粗調(diào)器用來從比較大的OPD(例如1 mm)開始達到同相位條件。精調(diào)器用來在達到同相位狀態(tài)之后,控制并保持兩個干涉儀臂之間的OPD。