那么,也有人可能會問,如果限速標志沒有被遮擋,識別率有多高呢?同理,我們這里也可以一并計算:
從以上計算我們可以看到,限速標志未被遮擋完全暴露出來,識別率是相當(dāng)高的,但如果限速標記牌被阻擋住,識別率是比未遮擋的低很多。這兩個指標的融合使用,可以用于作為評價目前圖像處理算法識別限速標志性能的重要參考。當(dāng)然,實際的融合過程比這復(fù)雜得多,小鵬汽車工程師們正努力不斷優(yōu)化,提高各種工況下的識別率,提供更為舒適的智能駕駛輔助。
神經(jīng)網(wǎng)絡(luò)理論

圖9:神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是機器學(xué)習(xí)(Machine Learning,ML)的其中一種方式,是人工智能、認知科學(xué)、神經(jīng)生理學(xué)、非線性動力學(xué)、信息科學(xué)、和數(shù)理科學(xué)的“熱點”。
ANN的發(fā)展經(jīng)歷了三個階段
第一個階段是起步階段,從20世紀40年代開始逐漸形成了一個新興的邊緣性交叉學(xué)科。1943年,心理學(xué)家McCulloch和數(shù)學(xué)家Pitts合作,融匯了生物物理學(xué)和數(shù)學(xué),提出了第一個神經(jīng)計算模型: MP模型。1949年,心理學(xué)家Hebb通過對大腦神經(jīng)細胞、學(xué)習(xí)和條件反射的觀察與研究,提出了改變神經(jīng)元連接強度的、至今仍有重要意義的Hebb規(guī)則。
第二階段是發(fā)展階段,1957年,Rosenblatt發(fā)展了MP模型,提出了感知器模型:Perception Model,給出了兩層感知器的收斂定理,并提出了引入隱層處理元件的三層感知器這一重要的研究方向。1960年,Widrow提出自適應(yīng)線性元件模型:Ada-line model以及一種有效的網(wǎng)絡(luò)學(xué)習(xí)方法:Widrow-Hoff學(xué)習(xí)規(guī)則。
第三階段是成熟階段,1982年美國加州工學(xué)院的物理學(xué)家Hopfield提出了一個用于聯(lián)想記憶和優(yōu)化計算的新途徑——Hopfield網(wǎng)絡(luò),使得神經(jīng)網(wǎng)絡(luò)的研究有了突破性進展。1984年在Hopfield的一篇論文中,指出Hopfield網(wǎng)絡(luò)可以用集成電路實現(xiàn),很容易被工程技術(shù)人員和計算機科技工作者理解,引起工程技術(shù)界的普遍關(guān)注。
上世紀八十年代后期,神經(jīng)網(wǎng)絡(luò)的光芒被計算機技術(shù)、互聯(lián)網(wǎng)掩蓋了,但這幾年計算機技術(shù)的發(fā)展,恰恰給神經(jīng)網(wǎng)絡(luò)更大的機會。神經(jīng)網(wǎng)絡(luò)由一層一層的神經(jīng)元構(gòu)成。層數(shù)越多,就越深,所謂深度學(xué)習(xí)(Deep Learning)就是用很多層神經(jīng)元構(gòu)成的神經(jīng)網(wǎng)絡(luò)達到機器學(xué)習(xí)的功能。辛頓是深度學(xué)習(xí)的提出者,2006年,基于深度置信網(wǎng)絡(luò)(DBN)提出非監(jiān)督貪心逐層訓(xùn)練算法,為解決深層結(jié)構(gòu)相關(guān)的優(yōu)化難題帶來希望,隨后提出多層自動編碼器深層結(jié)構(gòu)。目前,深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)技術(shù)廣泛用于計算機視覺、語音識別、自然語言處理識別上。
關(guān)于神經(jīng)網(wǎng)絡(luò)的研究包含眾多學(xué)科領(lǐng)域,涉及數(shù)學(xué)、計算機、人工智能、微電子學(xué)、自動化、生物學(xué)、生理學(xué)、解剖學(xué)、認知科學(xué)等學(xué)科,這些領(lǐng)域彼此結(jié)合、滲透,相互推動神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用的發(fā)展。
