表 1. 寬帶測(cè)量要考慮的關(guān)鍵特性。
我們來(lái)詳細(xì)解釋幾個(gè)關(guān)鍵項(xiàng):
分辨率和動(dòng)態(tài)范圍。數(shù)字化儀和示波器都使用 ADC 來(lái)采集波形數(shù)據(jù)。ADC 對(duì)輸入電壓進(jìn)行采樣,并得出電壓電平的二進(jìn)制表示。有效位數(shù)(ENOB)能很好地衡量動(dòng)態(tài)范圍。ENOB 是考慮到噪聲和失真的有效位分辨率。它準(zhǔn)確地反映了頻域或時(shí)域測(cè)量中出現(xiàn)的寬帶噪聲。
ENOB = (SINAD – 1.76) / 6.02
SINAD(信號(hào)-噪聲及失真比)衡量的是信號(hào)質(zhì)量。ADC 分辨率會(huì)對(duì)它造成影響,但還有其他一些因素也對(duì)它有影響。
例如:
- 8 位采集將 10 Vpp輸入范圍分成 28份 = 256 級(jí),每級(jí)為 39 mV
- 10 位采集將級(jí)數(shù)增加 4 倍,16 位增加 256 倍(10Vpp 輸入范圍分為每級(jí) 152 uV)
示波器通常在非常大的帶寬上使用 8 位 ADC 進(jìn)行采集。通過(guò)在示波器內(nèi)添加不同的濾波技術(shù)可以改善 ENOB。例如,是德科技InfiniiVision示波器(配有 8 位 ADC,采樣率達(dá) 2.5 GS/秒)具有高分辨率模式,可以在降低帶寬的前提下實(shí)現(xiàn)更好的分辨率,將 ENOB 提升到 12 位。示波器分辨率適用于呈現(xiàn)非常寬的帶寬上的時(shí)域測(cè)量結(jié)果。
數(shù)字化儀通常采用 12 位或 14 位 ADC,并可以在縮小的帶寬上獲得更高的分辨率。數(shù)字化儀通常具有更高的 ENOB,或者在更窄帶寬上提供更高分辨率。對(duì)于需要進(jìn)行頻譜分析或具有動(dòng)態(tài)信號(hào)(同時(shí)包含大電壓和小電壓分量)的應(yīng)用(如調(diào)制后的波形),較高的 ENOB 有助于實(shí)現(xiàn)更高的分辨率和更低的本底噪聲(或更好的無(wú)雜散動(dòng)態(tài)范圍,即 SFDR)。與 8 位示波器可以提供 45 dB SFDR 相比,具有更高分辨率和良好 SFDR 的數(shù)字化儀能在數(shù)據(jù)分析期間捕獲更精細(xì)的細(xì)節(jié),例如,一臺(tái) 10 位數(shù)字化儀可以提供 57 dB 的 SFDR,而 12 位數(shù)字化儀則能達(dá)到 65 dB。
輸入帶寬和采樣率。選擇具有足夠帶寬的數(shù)字化儀或示波器對(duì)于準(zhǔn)確捕獲信號(hào)中最高頻率分量非常重要。奈奎斯特采樣定理表明,對(duì)于采樣系統(tǒng),奈奎斯特頻率Fn等于采樣頻率 fs 的 1/2。奈奎斯特頻率以上的信號(hào)能量將與 ADC 采樣率混合,其產(chǎn)物將折返到基帶上感興趣信號(hào)的頂部,導(dǎo)致無(wú)法實(shí)施精確采集(也稱為混疊)。輸入帶寬限制濾波器通常用于確保沒(méi)有信號(hào)能量高于有效奈奎斯特頻率。
圖 1. 輸入帶寬和采樣頻率。
在示波器中,最大額定采樣率 fs 應(yīng)當(dāng)比實(shí)時(shí)帶寬高 2.5 至 3 倍。這使得波形重建濾波器能夠以很好的分辨率精確再現(xiàn)高速信號(hào)的波形。
在數(shù)字化儀中,您可以考慮選擇超過(guò)采樣率(fn)一半的帶寬。有時(shí)可以通過(guò)欠采樣(undersampling)和特殊輸入濾波來(lái)捕獲大于 Fs/2 的頻率。例如,是德科技的 M9203A 和 M9703B 數(shù)字化儀支持 2 GHz 帶寬,ADC 采樣時(shí)鐘速率為 1.6 GS/s,允許使用欠采樣直接進(jìn)行下變頻。
在更高分辨率的數(shù)字化儀中,應(yīng)當(dāng)考慮到帶寬增加時(shí)隨之上升的總體噪聲。電路上增加的額外信號(hào)調(diào)理可能會(huì)影響 SFDR。這也是為什么數(shù)字化儀通常通過(guò)有限的滿標(biāo)度范圍(SFR)功能來(lái)保持交流或直流耦合,以確保獲得最低失真和最大動(dòng)態(tài)范圍(以及最好的 SFDR)。
示波器可以提供多種 FSR 和交流/直流耦合選擇。45 dB 的 SFDR 足以同時(shí)呈現(xiàn)大信號(hào)和小信號(hào)。帶寬越大,影響就越小,因?yàn)樵?8 位分辨率下看不到增加的噪聲。